¹³C and ¹H NMR Spectra of Synthetic (25*R*)-5α-Spirostanes[†]

Martín A. Iglesias Arteaga, Carlos S. Pérez Martinez,* Roxana Pérez Gil and Francisco Coll Manchado

Laboratorio de Productos Naturales, Facultad de Química, Universidad de La Habana, C. Habana, 10400, Cuba

The assignment of ¹³C and ¹H NMR signals of synthetic (25R)-5 α -spirostanes is presented; the main effects on chemical shifts due to substitution at C-23 are briefly discussed.

In connection with our studies of different bioactive spirostanic compounds we required the detailed NMR spectra of a number of synthetic compounds being extensively used as materials in our program. Several reports have dealt with the ¹³C NMR spectra of a number of naturally occurring spirostanic sapogenins.^{1–3} The assignment of all ¹H chemical shifts for hecogenin acetate has also been reported.⁴ We now report on the assignments of all ¹³C signals of the synthetic 23-oxygenated (25*R*)-5 α -spirostanes 5–12 and the corresponding C-23 non-substituted compounds 1–4 (Scheme 1).⁵ Additionally, assignments for all the ¹H chemical shifts for compounds 1, 5 and 9 are provided.[‡]

Results and Discussion

¹H and ¹³C NMR chemical shifts of the nuclei on rings A, B and C are in good agreement with the shielding data available for equivalent substitution patterns.^{4,6,7} As expected, substitution in the steroid nucleus only produces minor modifications of the shieldings of ¹H and ¹³C nuclei placed on the spiroketal moiety. Table 1 shows the ¹H chemical shifts§ for compounds **1**, **5** and **9**.

Substitution at C-23 exerts different effects on neighbouring ¹H nuclei. The presence of a carbonyl function at C-23 strongly deshields H-20, H-24 and H-25. Deshielding and inversion of the relative positions of the signals of axial and equatorial H-26 due to magnetic anisotropy also characterizes the presence of the carbonyl function at C-23.

 Table 1
 ¹H NMR chemical shifts (ppm) for compounds 1, 5 and 9

Scheme 1 Synthetic compounds studied

Minor deshieldings are observed on the signals of H-16 and the CH₃-27. Substitution by an equatorial hydroxy group at C-23 affects the signal of H-23 axial (3.47 ppm, dd J

Н	1	5	9	Н	1	5	9	Н	1	5	9
1α	1.01	1.02	1.02	9α	0.73	0.74	0.73	20	1.86	2.54	2.89
1 <i>B</i>	1.70	1.69	1.71	11 <i>β</i>	1.45 ^a	1.41 ^a	1.40 ^a	21	0.96	0.95	0.93
2β	1.53	1.54	1.54	11α	1.62 ^a	1.57 ^a	1.55 ^a	23ax	1.62	3.47	
2α	1.83	1.80	1.84	12α	1.16	1.17	1.15	23ea	1.62		
3α	4.71	4.71	4.72	12 <i>β</i>	1.73	1.77	1.78	24ax	1.41	1.25	2.44
4β	1.31	1.30	1.32	14 [΄] α	1.09	1.14	1.11	24eq	1.61	1.96	2.44
4α	1.64	1.60	1.64	15α	1.92	1.95	1.96	25ax	1.62	1.79	2.29
5α	1.33	1.33	1.33	15 <i>β</i>	1.28	1.35	1.29	26ax	3.36	3.25	3.79
6α	4.96	4.95	4.94	16 [΄] α	4.38	4.45	4.58	26ea	3.46	3.41	3.57
7α	1.15	1.16	1.15	17α	1.76	1.81	1.76	27	0.79	0.82	0.94
7 <i>B</i>	1.82	1.82	1.81	18	0.81	0.85	0.80				
8β	1.80	1.79	1.78	19	1.03	1.03	1.03				

^aStrongly coupled protons, approximate values.

*To receive any correspondence (*e-mail:* fmq@karin.fmq.uh.edu. cu).

†This is a **Short Paper** as defined in the Instructions for Authors, Section 5.0 [see *J. Chem. Research* (S), 1999, Issue 1]; there is therefore no corresponding material in *J. Chem. Research* (M).

Spectra were recorded on a Bruker ACF 250 NMR Spectrometerusing CDCl₃ as solvent with Me₄Si (¹H) or the solvent signal at 77.0 ppm (¹³C) as references. The working temperature was 300 K andthe concentrations of the samples were 10 and 30 mg ml⁻¹ for ¹H and ¹³C NMR spectra respectively. 11.6/4.9) and only exerts moderate effects on the remaining protons placed on the spiroketal side chain. Only H-20 signals show a large downfield shift. Deshielding of H-20 in the C-23 substituted compounds may be rationalized on the basis of spatial proximity, van der Waals compression⁴ for the hydroxy compounds (*see* Fig. 1) and a combination of such effects and carbonyl magnetic anisotropy in the ketocompounds.

 13 C signals of the spiroketal side chain are also affected by substitution at C-23. Besides the new functional carbon signals related to the ketone (201.5 ppm) or the alcohol

J. Chem. Research (S), 1999, 48–49[†]

[‡]The assignments were obtained with the information given by HHCOSY and HETCOR spectra. Complementary ¹H spectral data are available on request from the authors.

Fig. 1 Fragment of the molecular graphics⁸ corresponding to the side chains of (A) (25R)-23-hydroxyspirostan and (B) (25R)-23-ketospirostan

 Table 2
 ¹³C chemical shifts (ppm) for compounds 1–12

С	1	2	3	4	5	6	7	8	9	10	11	12
C-1	37.9	39.2	36.5	37.9	38.0	39.4	36.5	37.9	37.9	39.2	36.5	37.7
C-2	27.2	69.2	27.3	69.8	27.3	69.4	27.3	69.8	27.2	69.2	27.2	69.5
C-3	73.2	68.5	73.4	69.1	73.3	68.8	73.4	69.1	73.3	68.6	73.3	68.8
C-4	30.8	29.2	33.8	32.2	30.9	29.4	33.8	32.2	30.8	29.2	33.8	32.0
C-5	46.0	41.0	44.5	39.3	46.2	41.2	44.5	39.4	46.1	41.0	44.4	39.1
C-6	72.9	71.9	28.3	27.2	73.1	72.3	28.3	27.2	73.0	72.0	28.3	27.0
C-7	36.4	36.0	31.1	31.1	36.5	36.3	31.1	31.1	36.3	36.0	31.1	31.2
C-8	30.5	29.7	34.1	33.4	30.4	29.8	33.9	33.3	30.5	29.7	34.0	33.1
C-9	53.7	53.4	52.6	52.6	53.8	53.8	52.6	52.6	53.7	53.4	52.6	52.4
C-10	35.5	36.7	35.6	37.0	35.6	37.0	35.6	37.0	35.5	36.8	35.6	36.8
C-11	20.6	20.3	26.7	26.5	20.7	20.4	26.7	26.4	20.6	20.2	26.7	27.0
C-12	39.7	39.4	81.6	81.6	39.9	39.7	81.6	81.6	39.5	39.2	81.3	81.1
C-13	40.5	40.3	44.6	44.5	41.0	41.0	45.0	45.0	41.0	40.8	45.0	44.7
C-14	55.7	55.5	54.7	54.7	55.7	55.6	54.6	54.6	55.8	55.6	54.8	54.6
C-15	31.6	31.4	31.6	31.5	31.7	31.6	31.6	31.5	31.6	31.4	31.6	31.7
C-16	80.5	80.3	80.5	80.4	81.4	81.3	81.2	81.2	83.0	82.8	82.9	82.7
C-17	62.0	61.9	61.2	61.2	61.5	61.5	60.6	60.7	61.6	61.5	60.7	60.5
C-18	16.4	16.2	11.6	11.6	16.6	16.5	11.8	11.8	16.2	16.0	11.4	11.3
C-19	15.0	15.2	12.1	12.4	15.1	15.5	12.1	12.4	15.1	15.3	12.1	12.2
C-20	41.5	41.3	42.1	42.1	35.6	35.5	36.0	36.1	34.7	34.5	35.7	35.1
C-21	14.4	14.2	13.6	13.7	14.1	14.0	13.2	13.2	14.3	14.1	13.5	13.3
C-22	109.0	108.8	109.2	109.3	110.5	110.6	110.6	110.7	109.7	109.5	109.8	109.6
C-23	31.3	31.1	31.4	31.4	67.0	67.0	67.0	67.0	201.7	201.2	201.6	201.4
C-24	28.7	28.5	28.8	28.8	38.5	38.4	38.4	38.4	45.1	44.9	45.2	45.0
C-25	30.2	30.0	30.2	30.2	30.8	30.7	30.8	30.8	35.8	35.6	35.3	35.5
C-26	66.6	66.5	66.8	66.8	65.9	65.9	65.9	65.9	65.5	65.3	65.6	65.4
C-27	17.0	16.9	17.1	17.1	16.7	16.6	16.6	16.5	17.0	16.8	17.0	16.9

group (67.0 ppm) present at C-23 and the corresponding β effects at C-24, a significant deshielding of C-25 is observed in the 23-keto compounds, which is attributable to the loss of the 1,3 diaxial interaction between H-23 and H-25. Substitution at C-23 also produces shielding at C-20 which be attributed to a γ -gauche interaction, which is in agreement with the corresponding H-20 shifts (*see* Fig. 1). A minor deshielding effect at C-16 is also observed. Table 2 shows the ¹³C chemical shifts for compounds 1–12.

Thanks are due to Ms Rosa Arteaga for correction of the manuscript.

Received, 25th August 1998; Accepted, 2nd October 1998 Paper E/8/066631

References

- 1 H. Eggert and C. Djerassi, Tetrahedron Lett., 1975, 42, 3655.
- 2 K. Tori, S. Seo, T. Yoshihiro and J. Nishikawa, *Tetrahedron Lett.*, 1981, **22**, 2405.
- 3 P. K. Agrawal, D. C. Jain, R. K. Gupta and R. S. Thakur, *Phytochemistry*, 1985, **24**, 11, 2479.
- 4 D. N. Kirk, H. C. Toms, C. Douglas, K. A. White, K. E. Smith, S. Latif and R. W. P. Hubbard, J. Chem. Soc., Perkin Trans. 1, 1990, 1567.
- 5 M. A. Iglesias Arteaga, *Synthesis of Furostanic and Spirostanic Analogs of Brassinosteroids*, PhD Thesis, University of Havana, 1996.
- 6 H. Eggert, C. L. VanAntwerp, N. S. Bhacca and C. Djerassi, J. Org. Chem., 1976, 41, 71.
- 7 J. W. Blunt and J. B. Stothers, Org. Magn. Reson., 1977, 9, 450.
- 8 U. Burkert and N. L. Allinger, *Molecular Mechanics*, ACS Monograph 117, Washington DC, 1982.